EconPapers    
Economics at your fingertips  
 

Gate- and flux-tunable sin(2φ) Josephson element with planar-Ge junctions

Axel Leblanc (), Chotivut Tangchingchai, Zahra Sadre Momtaz, Elyjah Kiyooka, Jean-Michel Hartmann, Frédéric Gustavo, Jean-Luc Thomassin, Boris Brun, Vivien Schmitt, Simon Zihlmann, Romain Maurand, Étienne Dumur, Silvano Franceschi () and François Lefloch ()
Additional contact information
Axel Leblanc: Univ. Grenoble Alpes
Chotivut Tangchingchai: Univ. Grenoble Alpes
Zahra Sadre Momtaz: Institut Néel
Elyjah Kiyooka: Univ. Grenoble Alpes
Jean-Michel Hartmann: Univ. Grenoble Alpes
Frédéric Gustavo: Univ. Grenoble Alpes
Jean-Luc Thomassin: Univ. Grenoble Alpes
Boris Brun: Univ. Grenoble Alpes
Vivien Schmitt: Univ. Grenoble Alpes
Simon Zihlmann: Univ. Grenoble Alpes
Romain Maurand: Univ. Grenoble Alpes
Étienne Dumur: Univ. Grenoble Alpes
Silvano Franceschi: Univ. Grenoble Alpes
François Lefloch: Univ. Grenoble Alpes

Nature Communications, 2025, vol. 16, issue 1, 1-7

Abstract: Abstract Hybrid superconductor-semiconductor Josephson field-effect transistors (JoFETs) function as Josephson junctions with gate-tunable critical current. Additionally, they can feature a non-sinusoidal current-phase relation (CPR) containing multiple harmonics of the superconducting phase difference, a so-far underutilized property. Here we exploit this multi-harmonicity to create a Josephson circuit element with an almost perfectly π-periodic CPR, indicative of a largely dominant charge-4e supercurrent transport. We realize such a Josephson element, recently proposed as building block of a protected superconducting qubit, using a superconducting quantum interference device (SQUID) with low-inductance aluminum arms and two nominally identical JoFETs. The latter are fabricated from a SiGe/Ge/SiGe quantum-well heterostructure embedding a high-mobility two-dimensional hole gas. By carefully adjusting the JoFET gate voltages and finely tuning the magnetic flux through the SQUID close to half a flux quantum, we achieve a regime where the $$\sin (2\varphi )$$ sin ( 2 φ ) component accounts for more than 95% of the total supercurrent. This result demonstrates a new promising route towards parity-protected superconducting qubits.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56245-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56245-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56245-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56245-7