EconPapers    
Economics at your fingertips  
 

Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates

Ming-Han Chou, Hong Qiao, Haoxiong Yan, Gustav Andersson, Christopher R. Conner, Joel Grebel, Yash J. Joshi, Jacob M. Miller, Rhys G. Povey, Xuntao Wu and Andrew N. Cleland ()
Additional contact information
Ming-Han Chou: University of Chicago
Hong Qiao: University of Chicago
Haoxiong Yan: University of Chicago
Gustav Andersson: University of Chicago
Christopher R. Conner: University of Chicago
Joel Grebel: University of Chicago
Yash J. Joshi: University of Chicago
Jacob M. Miller: University of Chicago
Rhys G. Povey: University of Chicago
Xuntao Wu: University of Chicago
Andrew N. Cleland: University of Chicago

Nature Communications, 2025, vol. 16, issue 1, 1-7

Abstract: Abstract Mechanical systems have emerged as a compelling platform for applications in quantum information, leveraging advances in the control of phonons, the quanta of mechanical vibrations. Experiments have demonstrated the control and measurement of phonon states in mechanical resonators, and while dual-resonator entanglement has been demonstrated, more complex entangled states remain a challenge. Here, we demonstrate rapid multi-phonon entanglement generation and subsequent tomographic analysis, using a scalable platform comprising two surface acoustic wave resonators on separate substrates, each connected to a superconducting qubit. We synthesize a mechanical Bell state with a fidelity of $${{{{\mathcal{F}}}}}=0.872\pm 0.002$$ F = 0.872 ± 0.002 , and a multi-phonon entangled N = 2 N00N state with a fidelity of $${{{{\mathcal{F}}}}}=0.748\pm 0.008$$ F = 0.748 ± 0.008 . The compact, modular, and scalable platform we demonstrate will enable further advances in the quantum control of complex mechanical systems.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56454-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56454-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56454-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56454-0