EconPapers    
Economics at your fingertips  
 

All-natural charge gradient interface for sustainable seawater zinc batteries

Wenjie Fan, Chunliu Zhu, Xingjie Wang, Huanlei Wang, Yue Zhu, Jingwei Chen, Weiqian Tian, Jingyi Wu () and Guihua Yu ()
Additional contact information
Wenjie Fan: Ocean University of China
Chunliu Zhu: Ocean University of China
Xingjie Wang: Ocean University of China
Huanlei Wang: Ocean University of China
Yue Zhu: Ocean University of China
Jingwei Chen: Ocean University of China
Weiqian Tian: Ocean University of China
Jingyi Wu: Ocean University of China
Guihua Yu: The University of Texas at Austin

Nature Communications, 2025, vol. 16, issue 1, 1-11

Abstract: Abstract Paring seawater electrolyte with zinc metal electrode has emerged as one of the most sustainable alternative solutions for offshore stationary energy storages owing to the intrinsic safety, extremely low cost, and unlimited water source. However, it remains a substantial challenge to stabilize zinc metal negative electrode in seawater electrolyte, given the presence of chloride ions and complex cations in seawater. Here, we reveal that chloride pitting initiates negative electrode corrosion and aggravates dendritic deposition, causing rapid battery failure. We then report a charge gradient negative electrode interface design that eliminates chloride-induced corrosion and enables a sustainable zinc plating/stripping performance beyond 1300 h in natural seawater electrolyte at 1 mA cm-2/1 mAh cm-2. The gradually strengthened negative charges formed via diffusion-controlled electrostatic complexation of biomass-derived polysaccharides serve to repel the unfavorable accumulation of chloride ions while simultaneously accelerating the diffusion of zinc ions. The seawater-based Zn | |NaV3O8·7H2O cell delivers an initial areal discharge capacity of 5 mAh cm-2 and operates over 500 cycles at 500 mA g-1.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56519-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56519-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56519-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56519-0