The inherent adversarial robustness of analog in-memory computing
Corey Lammie (),
Julian Büchel,
Athanasios Vasilopoulos,
Manuel Gallo and
Abu Sebastian ()
Additional contact information
Corey Lammie: IBM Research Europe
Julian Büchel: IBM Research Europe
Athanasios Vasilopoulos: IBM Research Europe
Manuel Gallo: IBM Research Europe
Abu Sebastian: IBM Research Europe
Nature Communications, 2025, vol. 16, issue 1, 1-12
Abstract:
Abstract A key challenge for deep neural network algorithms is their vulnerability to adversarial attacks. Inherently non-deterministic compute substrates, such as those based on analog in-memory computing, have been speculated to provide significant adversarial robustness when performing deep neural network inference. In this paper, we experimentally validate this conjecture for the first time on an analog in-memory computing chip based on phase change memory devices. We demonstrate higher adversarial robustness against different types of adversarial attacks when implementing an image classification network. Additional robustness is also observed when performing hardware-in-the-loop attacks, for which the attacker is assumed to have full access to the hardware. A careful study of the various noise sources indicate that a combination of stochastic noise sources (both recurrent and non-recurrent) are responsible for the adversarial robustness and that their type and magnitude disproportionately effects this property. Finally, it is demonstrated, via simulations, that when a much larger transformer network is used to implement a natural language processing task, additional robustness is still observed.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-56595-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56595-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-56595-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().