EconPapers    
Economics at your fingertips  
 

Self-rerouting sensor network for electronic skin resilient to severe damage

T. Ozaki (), N. Ohta and M. Fujiyoshi
Additional contact information
T. Ozaki: Yokomichi
N. Ohta: Yokomichi
M. Fujiyoshi: Yokomichi

Nature Communications, 2025, vol. 16, issue 1, 1-10

Abstract: Abstract We propose a network architecture for electronic skin with an extensive sensor array—crucial for enabling robots to perceive their environment and interact effectively with humans. Fault tolerance is essential for electronic skins on robot exteriors. Although self-healing electronic skins targeting minor damages are studied using material-based approaches, substantial damages such as severe cuts necessitate re-establishing communication pathways, traditionally performed with high-functionality microprocessor sensor nodes. However, this method is costly, increases latency, and boosts power usage, limiting scalability for large, nuanced sensation-mimicking sensor arrays. Our proposed system features sensor nodes consisting of only a few dozen logic circuits, enabling them to autonomously reconstruct reading pathways. These nodes can adapt to topological changes within the sensor network caused by disconnections and reconnections. Testing confirms rapid reading times of only a few microseconds and power consumption of 1.88 μW/node at a 1 kHz sampling rate. This advancement significantly boosts robots’ collaborative potential with humans.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56596-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56596-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56596-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56596-1