EconPapers    
Economics at your fingertips  
 

Distal protein-protein interactions contribute to nirmatrelvir resistance

Eric M. Lewandowski, Xiujun Zhang, Haozhou Tan, Aiden Jaskolka-Brown, Navita Kohaal, Aliaksandra Frazier, Jesper J. Madsen, Lian M. C. Jacobs, Jun Wang () and Yu Chen ()
Additional contact information
Eric M. Lewandowski: University of South Florida
Xiujun Zhang: University of South Florida
Haozhou Tan: the State University of New Jersey
Aiden Jaskolka-Brown: University of South Florida
Navita Kohaal: University of South Florida
Aliaksandra Frazier: University of South Florida
Jesper J. Madsen: University of South Florida
Lian M. C. Jacobs: University of South Florida
Jun Wang: the State University of New Jersey
Yu Chen: University of South Florida

Nature Communications, 2025, vol. 16, issue 1, 1-8

Abstract: Abstract SARS-CoV-2 main protease, Mpro, is responsible for processing the viral polyproteins into individual proteins, including the protease itself. Mpro is a key target of anti-COVID-19 therapeutics such as nirmatrelvir (the active component of Paxlovid). Resistance mutants identified clinically and in viral passage assays contain a combination of active site mutations (e.g., E166V, E166A, L167F), which reduce inhibitor binding and enzymatic activity, and non-active site mutations (e.g., P252L, T21I, L50F), which restore the fitness of viral replication. To probe the role of the non-active site mutations in fitness rescue, here we use an Mpro triple mutant (L50F/E166A/L167F) that confers nirmatrelvir drug resistance with a viral fitness level similar to the wild-type. By comparing peptide and full-length Mpro protein as substrates, we demonstrate that the binding of Mpro substrate involves more than residues in the active site. Particularly, L50F and other non-active site mutations can enhance the Mpro dimer-dimer interactions and help place the nsp5-6 substrate at the enzyme catalytic center. The structural and enzymatic activity data of Mpro L50F, L50F/E166A/L167F, and others underscore the importance of considering the whole substrate protein in studying Mpro and substrate interactions, and offers important insights into Mpro function, resistance development, and inhibitor design.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56651-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56651-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56651-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56651-x