Pulsed vector atomic magnetometer using an alternating fast-rotating field
Tao Wang (),
Wonjae Lee,
Mark Limes,
Thomas Kornack,
Elizabeth Foley and
Michael Romalis ()
Additional contact information
Tao Wang: Princeton University
Wonjae Lee: Princeton University
Mark Limes: 300 Deer Creek Dr.
Thomas Kornack: 300 Deer Creek Dr.
Elizabeth Foley: 300 Deer Creek Dr.
Michael Romalis: Princeton University
Nature Communications, 2025, vol. 16, issue 1, 1-9
Abstract:
Abstract We introduce a vector atomic magnetometer that employs a fast-rotating magnetic field applied to a pulsed 87Rb scalar atomic magnetometer. This approach enables simultaneous measurements of the total magnetic field and its two polar angles relative to the rotation plane. Operating in gradiometer mode, the magnetometer achieves a total field gradient sensitivity of 35 $${{{\rm{fT}}}}/\sqrt{{{{\rm{Hz}}}}}$$ fT / Hz (0.7 parts per billion) and angular resolutions of 6 $${{{\rm{nrad}}}}/\sqrt{{{{\rm{Hz}}}}}$$ nrad / Hz at a 50 μT Earth field strength. The noise spectra remain flat down to 1 Hz and 0.1 Hz, respectively. Here we show that this method overcomes several metrological challenges commonly faced by vector magnetometers and gradiometers. We propose a unique peak-altering modulation technique to mitigate systematic effects, including a newly identified dynamic heading error. Additionally, we establish the fundamental sensitivity limits of the sensor, demonstrating that its vector sensitivity approaches scalar sensitivity while preserving the inherent accuracy and calibration benefits of scalar sensors. This high-dynamic-range, ultrahigh-resolution magnetometer offers exceptional versatility for diverse applications.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-56668-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56668-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-56668-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().