EconPapers    
Economics at your fingertips  
 

Accelerated epigenetic aging in Huntington’s disease involves polycomb repressive complex 1

Baptiste Brulé, Rafael Alcalá-Vida, Noémie Penaud, Jil Scuto, Coline Mounier, Jonathan Seguin, Sina Vincent Khodaverdian, Brigitte Cosquer, Etienne Birmelé, Stéphanie Gras, Charles Decraene, Anne-Laurence Boutillier and Karine Merienne ()
Additional contact information
Baptiste Brulé: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Rafael Alcalá-Vida: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Noémie Penaud: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Jil Scuto: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Coline Mounier: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Jonathan Seguin: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Sina Vincent Khodaverdian: University of Strasbourg
Brigitte Cosquer: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Etienne Birmelé: University of Strasbourg
Stéphanie Gras: University of Strasbourg
Charles Decraene: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Anne-Laurence Boutillier: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)
Karine Merienne: Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)

Nature Communications, 2025, vol. 16, issue 1, 1-18

Abstract: Abstract Loss of epigenetic information during physiological aging compromises cellular identity, leading to de-repression of developmental genes. Here, we assessed the epigenomic landscape of vulnerable neurons in two reference mouse models of Huntington neurodegenerative disease (HD), using cell-type-specific multi-omics, including temporal analysis at three disease stages via FANS-CUT&Tag. We show accelerated de-repression of developmental genes in HD striatal neurons, involving histone re-acetylation and depletion of H2AK119 ubiquitination and H3K27 trimethylation marks, which are catalyzed by polycomb repressive complexes 1 and 2 (PRC1 and PRC2), respectively. We further identify a PRC1-dependent subcluster of bivalent developmental transcription factors that is re-activated in HD striatal neurons. This mechanism likely involves progressive paralog switching between PRC1-CBX genes, which promotes the upregulation of normally low-expressed PRC1-CBX2/4/8 isoforms in striatal neurons, alongside the down-regulation of predominant PRC1-CBX isoforms in these cells (e.g., CBX6/7). Collectively, our data provide evidence for PRC1-dependent accelerated epigenetic aging in HD vulnerable neurons.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56722-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56722-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56722-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56722-z