EconPapers    
Economics at your fingertips  
 

Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression

Joseph M. Josephides and Chun-Long Chen ()
Additional contact information
Joseph M. Josephides: Sorbonne Université
Chun-Long Chen: Sorbonne Université

Nature Communications, 2025, vol. 16, issue 1, 1-15

Abstract: Abstract Genomic heterogeneity has largely been overlooked in single-cell replication timing (scRT) studies. Here, we develop MnM, an efficient machine learning-based tool that allows disentangling scRT profiles from heterogenous samples. We use single-cell copy number data to accurately perform missing value imputation, identify cell replication states, and detect genomic heterogeneity. This allows us to separate somatic copy number alterations from copy number changes resulting from DNA replication. Our methodology brings critical insights into chromosomal aberrations and highlights the ubiquitous aneuploidy process during tumorigenesis. The copy number and scRT profiles obtained by analysing >119,000 high-quality human single cells from different cell lines, patient tumours and patient-derived xenograft samples leads to a multi-sample heterogeneity-resolved scRT atlas. This atlas is an important resource for cancer research and demonstrates that scRT profiles can be used to study replication timing heterogeneity in cancer. Our findings also highlight the importance of studying cancer tissue samples to comprehensively grasp the complexities of DNA replication because cell lines, although convenient, lack dynamic environmental factors. These results facilitate future research at the interface of genomic instability and replication stress during cancer progression.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56783-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56783-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56783-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56783-0