Learning and actioning general principles of cancer cell drug sensitivity
Francesco Carli (francesco.carli@sns.it),
Pierluigi Chiaro,
Mariangela Morelli,
Chakit Arora,
Luisa Bisceglia,
Natalia Oliveira Rosa,
Alice Cortesi,
Sara Franceschi,
Francesca Lessi,
Anna Luisa Stefano,
Orazio Santo Santonocito,
Francesco Pasqualetti,
Paolo Aretini,
Pasquale Miglionico,
Giuseppe R. Diaferia,
Fosca Giannotti,
Pietro Liò,
Miquel Duran-Frigola,
Chiara Maria Mazzanti,
Gioacchino Natoli and
Francesco Raimondi (francesco.raimondi@sns.it)
Additional contact information
Francesco Carli: Scuola Normale Superiore
Pierluigi Chiaro: European Institute of Oncology IRCCS
Mariangela Morelli: Fondazione Pisana per la Scienza ONLUS
Chakit Arora: Scuola Normale Superiore
Luisa Bisceglia: Scuola Normale Superiore
Natalia Oliveira Rosa: Scuola Normale Superiore
Alice Cortesi: European Institute of Oncology IRCCS
Sara Franceschi: Fondazione Pisana per la Scienza ONLUS
Francesca Lessi: Fondazione Pisana per la Scienza ONLUS
Anna Luisa Stefano: Neurosurgical Department of Spedali Riuniti di Livorno
Orazio Santo Santonocito: Neurosurgical Department of Spedali Riuniti di Livorno
Francesco Pasqualetti: Azienda Ospedaliera Universitaria Pisana
Paolo Aretini: Fondazione Pisana per la Scienza ONLUS
Pasquale Miglionico: Scuola Normale Superiore
Giuseppe R. Diaferia: European Institute of Oncology IRCCS
Fosca Giannotti: Scuola Normale Superiore
Pietro Liò: University of Cambridge
Miquel Duran-Frigola: Can Sutirà
Chiara Maria Mazzanti: Fondazione Pisana per la Scienza ONLUS
Gioacchino Natoli: European Institute of Oncology IRCCS
Francesco Raimondi: Scuola Normale Superiore
Nature Communications, 2025, vol. 16, issue 1, 1-23
Abstract:
Abstract High-throughput screening of drug sensitivity of cancer cell lines (CCLs) holds the potential to unlock anti-tumor therapies. In this study, we leverage such datasets to predict drug response using cell line transcriptomics, focusing on models’ interpretability and deployment on patients’ data. We use large language models (LLMs) to match drug to mechanisms of action (MOA)-related pathways. Genes crucial for prediction are enriched in drug-MOAs, suggesting that our models learn the molecular determinants of response. Furthermore, by using only LLM-curated, MOA-genes, we enhance the predictive accuracy of our models. To enhance translatability, we align RNAseq data from CCLs, used for training, to those from patient samples, used for inference. We validated our approach on TCGA samples, where patients’ best scoring drugs match those prescribed for their cancer type. We further predict and experimentally validate effective drugs for the patients of two highly lethal solid tumors, i.e., pancreatic cancer and glioblastoma.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-56827-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56827-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-56827-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla (sonal.shukla@springer.com) and Springer Nature Abstracting and Indexing (indexing@springernature.com).