Phages carry orphan antitoxin-like enzymes to neutralize the DarTG1 toxin-antitoxin defense system
Anna Johannesman,
Leila C. Awasthi,
Nico Carlson and
Michele LeRoux ()
Additional contact information
Anna Johannesman: Washington University in Saint Louis School of Medicine
Leila C. Awasthi: Washington University in Saint Louis School of Medicine
Nico Carlson: Washington University in Saint Louis School of Medicine
Michele LeRoux: Washington University in Saint Louis School of Medicine
Nature Communications, 2025, vol. 16, issue 1, 1-11
Abstract:
Abstract The astounding number of anti-phage defenses encoded by bacteria is countered by an elaborate set of phage counter-defenses, though their evolutionary origins are often unknown. Here, we report the discovery of an orphan antitoxin counter-defense element in T4-like phages that can overcome the bacterial toxin-antitoxin phage defense system, DarTG1. The DarT1 toxin, an ADP-ribosyltransferase, modifies phage DNA to prevent replication while its cognate antitoxin, DarG1, is a NADAR superfamily ADP-ribosylglycohydrolase that reverses these modifications in uninfected bacteria. We show that some phages carry an orphan DarG1-like NADAR domain protein, which we term anti-DarT factor NADAR (AdfN), that removes ADP-ribose modifications from phage DNA during infection thereby enabling replication in DarTG1-containing bacteria. We find divergent NADAR proteins in unrelated phages that likewise exhibit anti-DarTG1 activity, underscoring the importance of ADP-ribosylation in bacterial-phage interactions, and revealing the function of a substantial subset of the NADAR superfamily.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-56887-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56887-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-56887-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().