EconPapers    
Economics at your fingertips  
 

Supramolecular rosette intermediated homochiral double helix

Tiejun Li, Dian Niu, Lukang Ji, Qian Li, Bo Guan, Hanxiao Wang, Guanghui Ouyang () and Minghua Liu ()
Additional contact information
Tiejun Li: Chinese Academy of Sciences
Dian Niu: Chinese Academy of Sciences
Lukang Ji: Chinese Academy of Sciences
Qian Li: Chinese Academy of Sciences
Bo Guan: Chinese Academy of Sciences
Hanxiao Wang: Chinese Academy of Sciences
Guanghui Ouyang: Chinese Academy of Sciences
Minghua Liu: Chinese Academy of Sciences

Nature Communications, 2025, vol. 16, issue 1, 1-10

Abstract: Abstract Precise organization of organic molecules into homochiral double-helix remains a challenge due to the difficulty in controlling both self-assembly process and chirality transfer across length scales. Here, we report that a type of bisnaphthalene bisurea molecule could assemble into chirality-controlled nanoscale double-helices by a supramolecular rosette-intermediated hierarchical self-assembly mechanism. A solvent-mixing self-assembly protocol is adopted to direct bisnaphthalene bisurea cyclization into chiral discrete rosettes through cooperative intramolecular and intermolecular hydrogen bonds. Controlled hexagonal packing of rosettes at higher concentrations gives one-dimensional single-stranded nanofibers, which intertwine into well-defined double-helix nanostructures with preferred chirality that depends on the absolute configurations of bisnaphthalene bisurea. The hierarchical organization of bisnaphthalene bisurea molecules enables effective excitation energy delocalization within the double-helix, which contributes to near-unity energy transfer from double-helix to adsorbed acceptor dyes even in donor/acceptor ratios over 1000, leading to bright circularly polarized luminescence from the originally achiral acceptor. The experimental and theoretical simulation results not only provide a hierarchical strategy to fabricate homochiral double-helix but also bring insights in understanding the high-efficiency light-harvesting process in photosystem II.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-57059-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57059-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-57059-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57059-3