Forcing mechanisms of the half-precession cycle in the western equatorial Pacific temperature
Zhipeng Wu (),
Qiuzhen Yin (),
André Berger and
Zhengtang Guo
Additional contact information
Zhipeng Wu: Université catholique de Louvain
Qiuzhen Yin: Université catholique de Louvain
André Berger: Université catholique de Louvain
Zhengtang Guo: Chinese Academy of Sciences
Nature Communications, 2025, vol. 16, issue 1, 1-11
Abstract:
Abstract The western equatorial Pacific (WEP) plays an important role on global climate. Many studies have reported the classical orbital cycles in the WEP temperature variations, but the half-precession (~10-kyr) cycle, despite its uniqueness in the equatorial insolation, is paid less attention. Here, a systematic study on the half-precession cycle in the WEP temperature is performed based on the analysis of transient climate simulations covering the past 800,000 years, combined with high-resolution temperature reconstructions. The results show that the half-precession cycle is a significant signal in the WEP temperature. The model simulations show that in response to astronomical forcing, the half-precession cycle in the WEP surface and upper subsurface temperatures is driven by maximum equatorial insolation, while it is driven by bi-hemisphere maximum insolation in the lower subsurface temperature. The different forcing mechanisms at different depths are related to distinct local ocean circulation patterns. The astronomically-induced half-precession cycles are modulated by eccentricity, CO2 and ice sheets. Given the importance of WEP on global climate, the half-precession cycle in the WEP temperature may contribute to the half-precession signal recorded in other regions.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-57076-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57076-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-57076-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().