Minimized optical/electrical energy loss for 25.1% Monolithic perovskite/organic tandem solar cells
Zhangwei He,
Runnan Yu (),
Yiman Dong,
Ruyue Wang,
Yuling Zhang and
Zhan’ao Tan ()
Additional contact information
Zhangwei He: Beijing University of Chemical Technology
Runnan Yu: Beijing University of Chemical Technology
Yiman Dong: Beijing University of Chemical Technology
Ruyue Wang: Beijing University of Chemical Technology
Yuling Zhang: Beijing University of Chemical Technology
Zhan’ao Tan: Beijing University of Chemical Technology
Nature Communications, 2025, vol. 16, issue 1, 1-10
Abstract:
Abstract Perovskite/organic tandem solar cells (PO-TSCs) exploit the advantages of cost-effective fabrication, orthogonal solvent processing for perovskite and organic absorber layers, and compatibility with low-temperature, high-throughput deposition techniques. However, their performance remains hampered by energy losses of subcells and interconnecting layers (ICLs). Here, an energy loss management strategy for PO-TSCs is proposed, focusing on the simultaneous regulation of defect states in perovskite front subcells and the reduction of optical and electrical losses in the ICL. The synergistic effect of hydrogen bonding and coordination interactions between the pyridinium bromide perbromide and perovskite layer effectively mitigates ion migration, thereby minimizing energy losses. Meanwhile, the optimized V2O5-based ICL structure not only demonstrates excellent transmissivity for near-infrared photons but also allows for barrier-free extraction of charge carriers. Such structure can provide a low-loss interface, facilitating light management within the bulk heterojunction, which effectively balances the current between the front and rear subcells. Taken together, the resulting PO-TSCs deliver a power conversion efficiency of 25.1% with a high open-circuit voltage of 2.10 V.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-57093-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57093-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-57093-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().