EconPapers    
Economics at your fingertips  
 

Interpolating numerically exact many-body wave functions for accelerated molecular dynamics

Yannic Rath () and George H. Booth ()
Additional contact information
Yannic Rath: National Physical Laboratory
George H. Booth: King’s College London

Nature Communications, 2025, vol. 16, issue 1, 1-13

Abstract: Abstract While there have been many developments in computational probes of both strongly-correlated molecular systems and machine-learning accelerated molecular dynamics, there remains a significant gap in capabilities in simulating accurate non-local electronic structure over timescales on which atoms move. We develop an approach to bridge these fields with a practical interpolation scheme for the correlated many-electron state through the space of atomic configurations, whilst avoiding the exponential complexity of these underlying electronic states. With a small number of accurate correlated wave functions as a training set, we demonstrate provable convergence to near-exact potential energy surfaces for subsequent dynamics with propagation of a valid many-body wave function and inference of its variational energy whilst retaining a mean-field computational scaling. This represents a profoundly different paradigm to the direct interpolation of potential energy surfaces in established machine-learning approaches. We combine this with modern electronic structure approaches to systematically resolve molecular dynamics trajectories and converge thermodynamic quantities with a high-throughput of several million interpolated wave functions with explicit validation of their accuracy from only a few numerically exact quantum chemical calculations. We also highlight the comparison to traditional machine-learned potentials or dynamics on mean-field surfaces.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-57134-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57134-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-57134-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57134-9