EconPapers    
Economics at your fingertips  
 

Low-temperature pressure-assisted liquid-metal printing for β-Ga2O3 thin-film transistors

Chi-Hsin Huang, Ruei-Hong Cyu, Yu-Lun Chueh and Kenji Nomura ()
Additional contact information
Chi-Hsin Huang: University of California San Diego
Ruei-Hong Cyu: National Tsing Hua University
Yu-Lun Chueh: National Tsing Hua University
Kenji Nomura: University of California San Diego

Nature Communications, 2025, vol. 16, issue 1, 1-13

Abstract: Abstract Developing a low-temperature and cost-effective manufacturing process for energy-efficient and high-performance oxide-thin-film transistors (TFTs) is a crucial step toward advancing next-generation device applications such as wearable and flexible electronics. Among several methods, a liquid-metal printing technique is considered a promising, cost-effective oxide semiconductor process due to its inherent advantages, such as vacuum-free, low-thermal budget, high throughput, and scalability. In this study, we have developed a pressure-assisted liquid-metal printing technique enabling the low-temperature synthesis of polycrystalline wide bandgap n-channel oxide-TFTs. The n-channel oxide TFTs based on ~3 nm-thick β-Ga2O3 channels exhibited good TFT switching properties with a threshold voltage of ~3.8 V, a saturation mobility of ~11.7 cm2 V−1 s−1, an on/off-current ratio of ~109, and a subthreshold slope of ~163 mV/decade. We also observed p-channel operation in the off-stoichiometric GaOx channels fabricated at high-pressure conditions. Toward oxide-based circuit applications, we developed high-performance oxide-TFT-based inverters. While our approach can promote the advancement of low-temperature manufacturing for oxide TFT technology, further work will be necessary to confirm the role of the applied pressure in the β-Ga2O3 crystallization process.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-57200-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57200-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-57200-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57200-2