EconPapers    
Economics at your fingertips  
 

Capturing ultrafast molecular motions and lattice dynamics in spin crossover film using femtosecond diffraction methods

Doriana Vinci, Karl Ridier, Fengfeng Qi, Fernando Ardana-Lamas, Peter Zalden, Lai Chung Liu, Tobias Eklund, Mads Sielemann Jakobsen, Robin Schubert, Dmitry Khakhulin, Carsten Deiter, Nicolas Bottin, Hazem Yousef, David Stetten, Piotr Łaski, Radosław Kamiński, Katarzyna N. Jarzembska, Rachel F. Wallick, Till Stensitzki, Renske M. Veen, Henrike M. Müller-Werkmeister, Gábor Molnár, Dao Xiang (), Christopher Milne (), Maciej Lorenc () and Yifeng Jiang ()
Additional contact information
Doriana Vinci: European XFEL
Karl Ridier: Université de Toulouse
Fengfeng Qi: Shanghai Jiao Tong University
Fernando Ardana-Lamas: European XFEL
Peter Zalden: European XFEL
Lai Chung Liu: Uncharted Software
Tobias Eklund: European XFEL
Mads Sielemann Jakobsen: Center for Data and Computing in Natural Sciences (CDCS)
Robin Schubert: European XFEL
Dmitry Khakhulin: European XFEL
Carsten Deiter: European XFEL
Nicolas Bottin: European XFEL
Hazem Yousef: European XFEL
David Stetten: European Molecular Biology Laboratory (EMBL), Hamburg unit c/o DESY
Piotr Łaski: University of Warsaw, Faculty of Chemistry
Radosław Kamiński: University of Warsaw, Faculty of Chemistry
Katarzyna N. Jarzembska: University of Warsaw, Faculty of Chemistry
Rachel F. Wallick: Department of Chemistry, University of Illinois Urbana-Champaign
Till Stensitzki: Institute of Chemistry, University of Potsdam
Renske M. Veen: Department of Chemistry, University of Illinois Urbana-Champaign
Henrike M. Müller-Werkmeister: Institute of Chemistry, University of Potsdam
Gábor Molnár: Université de Toulouse
Dao Xiang: Shanghai Jiao Tong University
Christopher Milne: European XFEL
Maciej Lorenc: Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251
Yifeng Jiang: European XFEL

Nature Communications, 2025, vol. 16, issue 1, 1-12

Abstract: Abstract A comprehensive insight into ultrafast dynamics of photo-switchable materials is desired for efficient control of material properties through light excitation. Here, we study a polycrystalline spin crossover thin film as a prototypical example and reveal the sequential photo-switching dynamics, from local molecular rearrangement to global lattice deformation. On the earliest femtosecond timescale, the local molecular structural rearrangement occurs within a constant unit-cell volume through a two-step process, involving initial Fe−ligand bond elongation followed by ligand rotation. The highly-oriented structure of the nanocrystalline films and the experimental geometry enables resolving the full anisotropic lattice structural dynamics in and out of the sample plane separately. While both molecular switching and lattice heating influence lattice volume, they exert varying degrees of impact at disparate time scales following photoexcitation. This study highlights the opportunities provided by Mega-electron-volt electron and X-ray free electron laser to advance the understanding of ultrafast dynamics of photo-switchable materials.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-57202-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57202-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-57202-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57202-0