CatPred: a comprehensive framework for deep learning in vitro enzyme kinetic parameters
Veda Sheersh Boorla and
Costas D. Maranas ()
Additional contact information
Veda Sheersh Boorla: The Pennsylvania State University
Costas D. Maranas: The Pennsylvania State University
Nature Communications, 2025, vol. 16, issue 1, 1-17
Abstract:
Abstract Estimation of enzymatic activities still heavily relies on experimental assays, which can be cost and time-intensive. We present CatPred, a deep learning framework for predicting in vitro enzyme kinetic parameters, including turnover numbers (kcat), Michaelis constants (Km), and inhibition constants (Ki). CatPred addresses key challenges such as the lack of standardized datasets, performance evaluation on enzyme sequences that are dissimilar to those used during training, and model uncertainty quantification. We explore diverse learning architectures and feature representations, including pretrained protein language models and three-dimensional structural features, to enable robust predictions. CatPred provides accurate predictions with query-specific uncertainty estimates, with lower predicted variances correlating with higher accuracy. Pretrained protein language model features particularly enhance performance on out-of-distribution samples. CatPred also introduces benchmark datasets with extensive coverage (~23 k, 41 k, and 12 k data points for kcat, Km, and Ki respectively). Our framework performs competitively with existing methods while offering reliable uncertainty quantification.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-57215-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57215-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-57215-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().