A metabolic synthetic lethality of phosphoinositide 3-kinase-driven cancer
Guillaume P. Andrieu (),
Mathieu Simonin,
Aurélie Cabannes-Hamy,
Etienne Lengliné,
Ambroise Marçais,
Alexandre Théron,
Grégoire Huré,
Jérome Doss,
Ivan Nemazanyy,
Marie Émilie Dourthe,
Nicolas Boissel,
Hervé Dombret,
Philippe Rousselot,
Olivier Hermine and
Vahid Asnafi ()
Additional contact information
Guillaume P. Andrieu: Université Paris Cité
Mathieu Simonin: Université Paris Cité
Aurélie Cabannes-Hamy: APHP
Etienne Lengliné: Université Paris Cité
Ambroise Marçais: Université Paris Cité
Alexandre Théron: Université de Montpellier
Grégoire Huré: Université Paris Cité
Jérome Doss: Université Paris Cité
Ivan Nemazanyy: Université Paris Cité
Marie Émilie Dourthe: Université Paris Cité
Nicolas Boissel: Université Paris Cité
Hervé Dombret: Université Paris Cité
Philippe Rousselot: APHP
Olivier Hermine: Université Paris Cité
Vahid Asnafi: Université Paris Cité
Nature Communications, 2025, vol. 16, issue 1, 1-15
Abstract:
Abstract The deregulated activation of the phosphoinositide 3-kinase (PI3K) pathway is a hallmark of aggressive tumors with metabolic plasticity, eliciting their adaptation to the microenvironment and resistance to chemotherapy. A significant gap lies between the biological features of PI3K-driven tumors and the specific targeting of their vulnerabilities. Here, we explore the metabolic liabilities of PI3K-altered T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological cancer with dismal outcomes. We report a metabolic crosstalk linking glutaminolysis and glycolysis driven by PI3K signaling alterations. Pharmaceutical inhibition of mTOR reveals the singular plasticity of PI3K-altered cells toward the mobilization of glutamine as a salvage pathway to ensure their survival. Subsequently, the combination of glutamine degradation and mTOR inhibition demonstrates robust cytotoxicity in PI3K-driven solid and hematological tumors in pre-clinical and clinical settings. We propose a novel therapeutic strategy to circumvent metabolic adaptation and efficiently target PI3K-driven cancer.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-57225-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57225-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-57225-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().