Ephemeral superconductivity atop the false vacuum
Gal Shavit (),
Stevan Nadj-Perge and
Gil Refael
Additional contact information
Gal Shavit: California Institute of Technology
Stevan Nadj-Perge: California Institute of Technology
Gil Refael: California Institute of Technology
Nature Communications, 2025, vol. 16, issue 1, 1-8
Abstract:
Abstract A many-body system in the vicinity of a first-order phase transition may get trapped in a local minimum of the free energy landscape. These so-called false-vacuum states may survive for exceedingly long times if the barrier for their decay is high enough. The rich phase diagram obtained in graphene multilayer devices presents a unique opportunity to explore transient superconductivity on top of a correlated false vacuum. Specifically, we consider superconductors which are terminated by an apparent first-order phase transition to a correlated phase with different symmetry. We propose that quenching across this transition leads to a non-equilibrium ephemeral superconductor, readily detectable using straightforward transport measurements. Moreover, the transient superconductor also generically enhances the false vacuum lifetime, potentially by orders of magnitude. In several scenarios, the complimentary effect takes place as well: superconductivity is temporarily emboldened in the false vacuum, albeit ultimately decaying. We demonstrate the applicability of these claims for different instances of superconductivity terminated by a first order transition in rhombohedral graphene. The obtained decay timescales position this class of materials as a promising playground to unambiguously realize and measure non-equilibrium superconductivity.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-57227-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57227-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-57227-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().