Ultrafast unidirectional spin Hall magnetoresistance driven by terahertz light field
Ruslan Salikhov (),
Igor Ilyakov,
Anneke Reinold,
Jan-Christoph Deinert,
Thales V. A. G. de Oliveira,
Alexey Ponomaryov,
Gulloo Lal Prajapati,
Patrick Pilch,
Ahmed Ghalgaoui,
Max Koch,
Jürgen Fassbender,
Jürgen Lindner,
Zhe Wang and
Sergey Kovalev ()
Additional contact information
Ruslan Salikhov: Helmholtz-Zentrum Dresden-Rossendorf
Igor Ilyakov: Helmholtz-Zentrum Dresden-Rossendorf
Anneke Reinold: TU Dortmund University
Jan-Christoph Deinert: Helmholtz-Zentrum Dresden-Rossendorf
Thales V. A. G. de Oliveira: Helmholtz-Zentrum Dresden-Rossendorf
Alexey Ponomaryov: Helmholtz-Zentrum Dresden-Rossendorf
Gulloo Lal Prajapati: Helmholtz-Zentrum Dresden-Rossendorf
Patrick Pilch: TU Dortmund University
Ahmed Ghalgaoui: TU Dortmund University
Max Koch: TU Dortmund University
Jürgen Fassbender: Helmholtz-Zentrum Dresden-Rossendorf
Jürgen Lindner: Helmholtz-Zentrum Dresden-Rossendorf
Zhe Wang: TU Dortmund University
Sergey Kovalev: TU Dortmund University
Nature Communications, 2025, vol. 16, issue 1, 1-8
Abstract:
Abstract The ultrafast control of magnetisation states in magnetically ordered systems poses significant technological challenges yet is vital for the development of memory devices that operate at picosecond timescales or terahertz (THz) frequencies. Despite considerable efforts achieving convenient ultrafast readout of magnetic states remains an area of active investigation. For practical applications, energy-efficient and cost-effective electrical detection is highly desirable. In this context, unidirectional spin-Hall magnetoresistance (USMR) has been proposed as a straightforward two-terminal geometry for the electrical detection of magnetisation states in magnetic heterostructures. In this work, we demonstrate that USMR is effective at THz frequencies, enabling picosecond time readouts initiated by light fields. We observe ultrafast USMR in various ferromagnet/heavy metal thin film heterostructures via THz second-harmonic generation. Our findings, along with temperature-dependent measurements of USMR, reveal a substantial contribution from electron-magnon spin-flip scattering, highlighting the potential for all-electrical detection of THz magnon modes.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-57432-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57432-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-57432-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().