Dscamb regulates cone mosaic formation in zebrafish via filopodium-mediated homotypic recognition
Dongpeng Hu and
Ichiro Masai ()
Additional contact information
Dongpeng Hu: Okinawa Institute of Science and Technology Graduate University
Ichiro Masai: Okinawa Institute of Science and Technology Graduate University
Nature Communications, 2025, vol. 16, issue 1, 1-18
Abstract:
Abstract Cone photoreceptors assemble to form a regular mosaic pattern in vertebrate retinas. In zebrafish, four distinct spectral cone types (red, green, blue, and ultraviolet), form a lattice-like pattern. However, the mechanism of cone mosaic formation has been unknown. Here we show that Down Syndrome Cell Adhesion Molecule b (Dscamb) regulates the cone mosaic pattern in zebrafish, especially via red-cone spacing. During photoreceptor differentiation, newly formed cones extend filopodium-like processes laterally to apical surfaces of neighboring cones. Interestingly, red cones extend filopodia, but promptly retract them when they meet their own cone type, suggesting filopodium-mediated, homotypic recognition and self-avoidance. This self-avoidance is compromised in zebrafish dscamb mutants, leading to abnormal clustering of red cones and subsequent disruption of regular cone spacing. Thus, apical filopodium-mediated spacing of the same cone type depends on Dscamb and is essential for cone mosaic formation in zebrafish.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-57506-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57506-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-57506-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().