Computational memory capacity predicts aging and cognitive decline
Mite Mijalkov (),
Ludvig Storm,
Blanca Zufiria-Gerbolés,
Dániel Veréb,
Zhilei Xu,
Anna Canal-Garcia,
Jiawei Sun,
Yu-Wei Chang,
Hang Zhao,
Emiliano Gómez-Ruiz,
Massimiliano Passaretti,
Sara Garcia-Ptacek,
Miia Kivipelto,
Per Svenningsson,
Henrik Zetterberg,
Heidi Jacobs,
Kathy Lüdge,
Daniel Brunner,
Bernhard Mehlig,
Giovanni Volpe () and
Joana B. Pereira ()
Additional contact information
Mite Mijalkov: Karolinska Institutet
Ludvig Storm: Goteborg University
Blanca Zufiria-Gerbolés: Karolinska Institutet
Dániel Veréb: Karolinska Institutet
Zhilei Xu: Karolinska Institutet
Anna Canal-Garcia: Karolinska Institutet
Jiawei Sun: Karolinska Institutet
Yu-Wei Chang: Goteborg University
Hang Zhao: Goteborg University
Emiliano Gómez-Ruiz: Goteborg University
Massimiliano Passaretti: Karolinska Institutet
Sara Garcia-Ptacek: Karolinska Institutet
Miia Kivipelto: Karolinska Institutet
Per Svenningsson: Karolinska Institutet
Henrik Zetterberg: the Sahlgrenska Academy at the University of Gothenburg
Heidi Jacobs: Maastricht University
Kathy Lüdge: Weimarer Straße 25
Daniel Brunner: CNRS
Bernhard Mehlig: Goteborg University
Giovanni Volpe: Goteborg University
Joana B. Pereira: Karolinska Institutet
Nature Communications, 2025, vol. 16, issue 1, 1-14
Abstract:
Abstract Memory is a crucial cognitive function that deteriorates with age. However, this ability is normally assessed using cognitive tests instead of the architecture of brain networks. Here, we use reservoir computing, a recurrent neural network computing paradigm, to assess the linear memory capacities of neural-network reservoirs extracted from brain anatomical connectivity data in a lifespan cohort of 636 individuals. The computational memory capacity emerges as a robust marker of aging, being associated with resting-state functional activity, white matter integrity, locus coeruleus signal intensity, and cognitive performance. We replicate our findings in an independent cohort of 154 young and 72 old individuals. By linking the computational memory capacity of the brain network with cognition, brain function and integrity, our findings open new pathways to employ reservoir computing to investigate aging and age-related disorders.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-57995-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57995-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-57995-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().