EconPapers    
Economics at your fingertips  
 

Ex vivo cortical circuits learn to predict and spontaneously replay temporal patterns

Benjamin Liu and Dean V. Buonomano ()
Additional contact information
Benjamin Liu: Los Angeles
Dean V. Buonomano: Los Angeles

Nature Communications, 2025, vol. 16, issue 1, 1-13

Abstract: Abstract It has been proposed that prediction and timing are computational primitives of neocortical microcircuits, specifically, that neural mechanisms are in place to allow neocortical circuits to autonomously learn the temporal structure of external stimuli and generate internal predictions. To test this hypothesis, we trained cortical organotypic slices on two temporal patterns using dual-optical stimulation. After 24-h of training, whole-cell recordings revealed network dynamics consistent with training-specific timed prediction. Unexpectedly, there was replay of the learned temporal structure during spontaneous activity. Furthermore, some neurons exhibited timed prediction errors as revealed by larger responses when the expected stimulus was omitted compared to when it was present. Mechanistically our results indicate that learning relied in part on asymmetric connectivity between distinct neuronal ensembles with temporally-ordered activation. These findings further suggest that local cortical microcircuits are intrinsically capable of learning temporal information and generating predictions, and that the learning rules underlying temporal learning and spontaneous replay can be intrinsic to local cortical microcircuits and not necessarily dependent on top-down interactions.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-025-58013-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58013-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-58013-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58013-z