Genetically regulated eRNA expression predicts chromatin contact frequency and reveals genetic mechanisms at GWAS loci
Michael J. Betti (),
Phillip Lin,
Melinda C. Aldrich and
Eric R. Gamazon ()
Additional contact information
Michael J. Betti: Vanderbilt University Medical Center
Phillip Lin: Vanderbilt University Medical Center
Melinda C. Aldrich: Vanderbilt University Medical Center
Eric R. Gamazon: Vanderbilt University Medical Center
Nature Communications, 2025, vol. 16, issue 1, 1-15
Abstract:
Abstract The biological functions of extragenic enhancer RNAs and their impact on disease risk remain relatively underexplored. In this work, we develop in silico models of genetically regulated expression of enhancer RNAs across 49 cell and tissue types, characterizing their degree of genetic control. Leveraging the estimated genetically regulated expression for enhancer RNAs and canonical genes in a large-scale DNA biobank (N > 70,000) and high-resolution Hi-C contact data, we train a deep learning-based model of pairwise three-dimensional chromatin contact frequency for enhancer-enhancer and enhancer-gene pairs in cerebellum and whole blood. Notably, the use of genetically regulated expression of enhancer RNAs provides substantial tissue-specific predictive power, supporting a role for these transcripts in modulating spatial chromatin organization. We identify schizophrenia-associated enhancer RNAs independent of GWAS loci using enhancer RNA-based TWAS and determine the causal effects of these enhancer RNAs using Mendelian randomization. Using enhancer RNA-based TWAS, we generate a comprehensive resource of tissue-specific enhancer associations with complex traits in the UK Biobank. Finally, we show that a substantially greater proportion (63%) of GWAS associations colocalize with causal regulatory variation when enhancer RNAs are included.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-58023-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58023-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-58023-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().