EconPapers    
Economics at your fingertips  
 

Imaging of coexisting classical and non-classical oriented attachment growth pathways in covalent organic framework microcrystals

Jinxiang Wu, Qianxi Wang, Yanhao Li and Yi He ()
Additional contact information
Jinxiang Wu: Southwest University of Science and Technology
Qianxi Wang: Southwest University of Science and Technology
Yanhao Li: Southwest University of Science and Technology
Yi He: Southwest University of Science and Technology

Nature Communications, 2025, vol. 16, issue 1, 1-9

Abstract: Abstract Three-dimensional covalent organic frameworks are promising multifunctional materials for applications in adsorption, separation, and catalysis. However, despite the continuous synthesis of an increasing number of three-dimensional covalent organic frameworks, little is known about the crystal growth pathways. Here, we report the real-time visual observation of the crystal growth process of COF-300 and LZU-79, two typical three-dimensional covalent organic frameworks, using in situ dark-field optical microscopy. Our dark-field optical microscopy imaging results reveal that two crystal-growth pathways are simultaneously operative during the liquid growth of COF-300 and LZU-79 microcrystals, including classical crystal growth modes and non-classical oriented attachment mechanisms. Specifically, detailed tracking of the trajectories between two rod-shaped single-crystal COF-300 pairs suggests that the oriented attachment process undergoes several distinct stages such as approach, alignment at (021) facets, tip-to-tip attachment, fusion, and shaping. Theoretical simulation results show that (021) facets of COF-300 microcrystals, which have a lower repulsive energy barrier due to steric solvation forces from intervening solvents, are energetically more favorable than (010) facets, inducing the oriented attachment between adjacent facets. This work enables a fundamental understanding of how three-dimensional covalent organic framework microcrystals grow dynamically, which can aid the further design of three-dimensional covalent organic frameworks with enhanced performances.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-58130-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58130-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-58130-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-02
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58130-9