EconPapers    
Economics at your fingertips  
 

Free-standing bilayer metasurfaces in the visible

Ahmed H. Dorrah, Joon-Suh Park, Alfonso Palmieri and Federico Capasso ()
Additional contact information
Ahmed H. Dorrah: Harvard University
Joon-Suh Park: Harvard University
Alfonso Palmieri: Harvard University
Federico Capasso: Harvard University

Nature Communications, 2025, vol. 16, issue 1, 1-10

Abstract: Abstract Multi-layered meta-optics have enabled complex wavefront shaping beyond their single layer counterpart owing to the additional design variables afforded by each plane. For instance, lossless complex amplitude modulation, generalized polarization transformations, and wide field of view are key attributes that fundamentally require multi-plane wavefront matching. Nevertheless, existing embodiments of bilayer metasurfaces have relied on configurations which suffer from Fresnel reflections, low mode confinement, or undesired resonances which compromise the intended response. Here, we introduce bilayer metasurfaces made of free-standing meta-atoms working in the visible spectrum. We demonstrate their use in wavefront shaping of linearly polarized light using pure geometric phase with diffraction efficiency of 80% — expanding previous literature on Pancharatnam-Berry phase metasurfaces which rely on circularly or elliptically polarized illumination. The fabrication relies on a two-step lithography and selective development processes which yield free standing, bilayer stacked metasurfaces, of 1200 nm total thickness. The metasurfaces comprise TiO2 nanofins with vertical sidewalls. Our work advances the nanofabrication of compound meta-optics and inspires new directions in wavefront shaping, metasurface integration, and polarization control.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-58205-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58205-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-58205-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58205-7