Coding schemes in neural networks learning classification tasks
Alexander Meegen () and
Haim Sompolinsky ()
Additional contact information
Alexander Meegen: Harvard University
Haim Sompolinsky: Harvard University
Nature Communications, 2025, vol. 16, issue 1, 1-12
Abstract:
Abstract Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-58276-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58276-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-58276-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().