Continuous sensorimotor transformation enhances robustness of neural dynamics to perturbation in macaque motor cortex
Cong Zheng (),
Qifan Wang and
He Cui ()
Additional contact information
Cong Zheng: Chinese Academy of Sciences
Qifan Wang: Chinese Academy of Sciences
He Cui: Chinese Academy of Sciences
Nature Communications, 2025, vol. 16, issue 1, 1-17
Abstract:
Abstract Neural activity in the motor cortex evolves dynamically to prepare and generate movement. Here, we investigate how motor cortical dynamics adapt to dynamic environments and whether these adaptations influence robustness against disruptions. We apply intracortical microstimulation (ICMS) in the motor cortex of monkeys performing delayed center-out reaches to either a static target (static) or a rotating target (moving) that required interception. While ICMS prolongs reaction times (RTs) in the static condition, it does not increase RTs in the moving condition, correlating with faster recovery of neural population activity post-perturbation. Neural dynamics suggests that the moving condition involves ongoing sensorimotor transformations during the delay period, whereas motor planning in the static condition is completed shortly. A neural network model shows that continuous feedback input rapidly corrects perturbation-induced errors in the moving condition. We conclude that continuous sensorimotor transformations enhance the motor cortex’s resilience to perturbations, facilitating timely movement execution.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-025-58421-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58421-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-58421-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().