Equilibration of topological defects near the deconfined quantum multicritical point
Yu-Rong Shu,
Shao-Kai Jian,
Anders W. Sandvik () and
Shuai Yin ()
Additional contact information
Yu-Rong Shu: Guangzhou University
Shao-Kai Jian: Tulane University
Anders W. Sandvik: Boston University
Shuai Yin: Sun Yat-Sen University
Nature Communications, 2025, vol. 16, issue 1, 1-10
Abstract:
Abstract Deconfined quantum criticality (DQC) arises from fractionalization of quasi-particles and leads to fascinating behaviors beyond the Landau-Ginzburg-Wilson description of phase transitions. Here, we study the critical dynamics when driving a two-dimensional quantum magnet through a weakly first-order transition point near a putative deconfined multicritical point separating antiferromagnetic and spontaneously dimerized ground states. Numerical simulations show that the conventional Kibble-Zurek scaling (KZS) mechanism is inadequate for describing the annealing process. We introduce the concept of dual asymmetric KZS, where both a pseudocritical relaxation time and the deconfinement time enter and the scaling also depends on the driving direction according to a duality principle connecting the topological defects in the two phases. These defects require a much longer time scale for equilibration than the amplitude of the order parameter. Beyond advancing the DQC scenario, our scaling approach provides a new window into out-of-equilibrium criticality with multiple length and time scales.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-58477-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58477-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-58477-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().