Inactivation of GH3.5 by COP1-mediated K63-linked ubiquitination promotes seedling hypocotyl elongation
Yongting Liu,
Yinpeng Xie,
Dongqing Xu,
Xing Wang Deng () and
Jian Li ()
Additional contact information
Yongting Liu: Shandong Laboratory of Advanced Agricultural Sciences in Weifang
Yinpeng Xie: Southern University of Science and Technology
Dongqing Xu: Nanjing Agricultural University
Xing Wang Deng: Shandong Laboratory of Advanced Agricultural Sciences in Weifang
Jian Li: Nanjing Normal University
Nature Communications, 2025, vol. 16, issue 1, 1-15
Abstract:
Abstract CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), which was first discovered as a central repressor of photomorphogenesis in Arabidopsis, destabilizes proteins by ubiquitination in both plants and animals. However, it is unclear whether and how Arabidopsis COP1 mediates non-proteolytic ubiquitination to regulate photomorphogenesis. Here, we show that COP1-mediated lysine 63 (K63)-linked polyubiquitination inhibits the enzyme activity of GRETCHEN HAGEN 3.5 (GH3.5), a synthetase that conjugates amino acids to indole-3-acetic acid (IAA), thereby promoting hypocotyl elongation in the dark. We show that COP1 physically interacts with and genetically acts through GH3.5 to promote hypocotyl elongation. COP1 does not affect GH3.5 protein stability; however, it suppresses GH3.5 activity through K63-linked ubiquitination in the dark, inhibiting the endogenous conversion of IAA to IAA-amino acid conjugates. Further, light regulates IAA metabolism by suppressing the inhibitory effect of COP1 on the function of GH3.5 and its homologs. Our results shed light on the non-proteolytic role of COP1-mediated ubiquitination and the mechanism by which light regulates auxin metabolism to modulate hypocotyl elongation.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-58767-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58767-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-58767-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().