Humans learn generalizable representations through efficient coding
Zeming Fang () and
Chris R. Sims
Additional contact information
Zeming Fang: Shanghai Jiao Tong University School of Medicine and School of Psychology
Chris R. Sims: Rensselaer Polytechnic Institute
Nature Communications, 2025, vol. 16, issue 1, 1-20
Abstract:
Abstract Reinforcement learning theory explains human behavior as driven by the goal of maximizing reward. Conventional approaches, however, offer limited insights into how people generalize from past experiences to new situations. Here, we propose refining the classical reinforcement learning framework by incorporating an efficient coding principle, which emphasizes maximizing reward using the simplest necessary representations. This refined framework predicts that intelligent agents, constrained by simpler representations, will inevitably: 1) distill environmental stimuli into fewer, abstract internal states, and 2) detect and utilize rewarding environmental features. Consequently, complex stimuli are mapped to compact representations, forming the foundation for generalization. We tested this idea in two experiments that examined human generalization. Our findings reveal that while conventional models fall short in generalization, models incorporating efficient coding achieve human-level performance. We argue that the classical RL objective, augmented with efficient coding, represents a more comprehensive computational framework for understanding human behavior in both learning and generalization.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-58848-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58848-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-58848-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().