EconPapers    
Economics at your fingertips  
 

An anisotropic strategy for developing polymer electrolytes endowing lithium metal batteries with electrochemo-mechanically stable interface

Jingren Gou, Kaixuan Cui, Suqing Wang (), Zheng Zhang (), Jiale Huang and Haihui Wang ()
Additional contact information
Jingren Gou: Tsinghua University
Kaixuan Cui: Tsinghua University
Suqing Wang: South China University of Technology
Zheng Zhang: Tsinghua University
Jiale Huang: Guangzhou University
Haihui Wang: Tsinghua University

Nature Communications, 2025, vol. 16, issue 1, 1-14

Abstract: Abstract Developing versatile solid polymer electrolytes is a reasonable approach to achieving reliable lithium metal batteries but is still challenging due to the nonuniform lithium deposition associated with the sluggish Li+ kinetics and insufficient mechanical strength. Herein, the concept of developing anisotropic solid polymer electrolyte is realized via integrating polymer hosts with highly oriented polyacrylonitrile nanofibers modified by Li6.4La3Zr1.4Ta0.6O12 particles. The oriented composite structure is employed to homogenize Li+ flux, serving as a physical barrier to resist lithium dendrites, retarding the side reaction between the electrolyte and lithium, thus endowing a compatible interface for lithium negative electrode. Correspondingly, the Li | |LiFePO4 cells steadily operate over 1000 cycles, delivering durable capacity retention of 91% at 170 mA g-1. Furthermore, numerical modeling and density functional theory are combined to clarify the multiphysics interplay between the designed solid polymer electrolyte and lithium negative electrode. This work provides a perspective for constructing interface-friendly solid polymer electrolytes at an electrochemo-mechanical level.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-58916-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58916-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-58916-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58916-x