EconPapers    
Economics at your fingertips  
 

Tunable magnons of an antiferromagnetic Mott insulator via interfacial metal-insulator transitions

Sujan Shrestha, Maryam Souri, Christopher J. Dietl, Ekaterina M. Pärschke, Maximilian Krautloher, Gabriel A. Calderon Ortiz, Matteo Minola, Xiatong Shi, Alexander V. Boris, Jinwoo Hwang, Giniyat Khaliullin, Gang Cao, Bernhard Keimer, Jong-Woo Kim, Jungho Kim and Ambrose Seo ()
Additional contact information
Sujan Shrestha: University of Kentucky
Maryam Souri: University of Kentucky
Christopher J. Dietl: Argonne National Laboratory
Ekaterina M. Pärschke: University of Alabama at Birmingham
Maximilian Krautloher: Max-Planck-Institut für Festkörperforschung
Gabriel A. Calderon Ortiz: The Ohio State University
Matteo Minola: Max-Planck-Institut für Festkörperforschung
Xiatong Shi: Max-Planck-Institut für Festkörperforschung
Alexander V. Boris: Max-Planck-Institut für Festkörperforschung
Jinwoo Hwang: The Ohio State University
Giniyat Khaliullin: Max-Planck-Institut für Festkörperforschung
Gang Cao: University of Colorado at Boulder
Bernhard Keimer: Max-Planck-Institut für Festkörperforschung
Jong-Woo Kim: Argonne National Laboratory
Jungho Kim: Argonne National Laboratory
Ambrose Seo: University of Kentucky

Nature Communications, 2025, vol. 16, issue 1, 1-7

Abstract: Abstract Antiferromagnetic insulators present a promising alternative to ferromagnets due to their ultrafast spin dynamics essential for low-energy terahertz spintronic device applications. Magnons, i.e., quantized spin waves capable of transmitting information through excitations, serve as a key functional element in this paradigm. However, identifying external mechanisms to effectively tune magnon properties has remained a major challenge. Here we demonstrate that interfacial metal-insulator transitions offer an effective method for controlling the magnons of Sr2IrO4, a strongly spin-orbit coupled antiferromagnetic Mott insulator. Resonant inelastic x-ray scattering experiments reveal a significant softening of zone-boundary magnon energies in Sr2IrO4 films epitaxially interfaced with metallic 4d transition-metal oxides. Therefore, the magnon dispersion of Sr2IrO4 can be tuned by metal-insulator transitions of the 4d transition-metal oxides. We tentatively attribute this non-trivial behavior to a long-range phenomenon mediated by magnon-acoustic phonon interactions. Our experimental findings introduce a strategy for controlling magnons and underscore the need for further theoretical studies to better understand the underlying microscopic interactions between magnons and phonons.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-58922-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58922-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-58922-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58922-z