EconPapers    
Economics at your fingertips  
 

Concerted catalysis of single atom and nanocluster enhances bio-ethanol activation and dehydrogenation

Zhao Sun, Weizhi Shi, Louise R. Smith, Nicholas F. Dummer, Haifeng Qi, Zhiqiang Sun () and Graham J. Hutchings ()
Additional contact information
Zhao Sun: Central South University
Weizhi Shi: Central South University
Louise R. Smith: Cardiff University
Nicholas F. Dummer: Cardiff University
Haifeng Qi: Cardiff University
Zhiqiang Sun: Central South University
Graham J. Hutchings: Cardiff University

Nature Communications, 2025, vol. 16, issue 1, 1-12

Abstract: Abstract Single atom and nanocluster catalysts are extensively investigated in heterogeneous catalysis due to their high catalytic activity and atomic utilization, while their coexisting properties and potentially synergistic effect are yet to be clarified. Herein, we construct three systems of atomic-scale catalysts (xNi/Mo2TiAlC2, x = 0.5, 1, and 1.5) for bio-ethanol reforming, which correspond to single atoms, single atoms mixed with nanoclusters, and nanoclusters. The respective hydrogen utilization efficiency of mixed-form catalyst increases by 43.7% and 29.3% compared to single atom and nanocluster catalysts. Results demonstrate that the adjacent Ni single atom facilitates electron transfer from Mo2TiAlC2 to Ni-Mo interface and raises the d-band center, thus enhancing bio-ethanol adsorption and activation; while the existence of Ni nanoclusters contributes to lowering the energy barriers of CH3CHO* dehydrogenation. The catalytically active sites are Ni-Mo alloyed single atoms with adjacent Ni nanoclusters. This work provides new implications for highly activated catalytic site construction and advanced catalyst design.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-59127-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59127-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-59127-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59127-0