EconPapers    
Economics at your fingertips  
 

Symmetric adenine methylation is an essential DNA modification in the early-diverging fungus Rhizopus microsporus

Carlos Lax, Stephen J. Mondo, José F. Martínez, Anna Muszewska, Leo A. Baumgart, José A. Pérez-Ruiz, Pablo Carrillo-Marín, Kurt LaButti, Anna Lipzen, Yu Zhang, Jie Guo, Vivian Ng, Eusebio Navarro, Teresa E. Pawlowska, Igor V. Grigoriev, Francisco E. Nicolás () and Victoriano Garre ()
Additional contact information
Carlos Lax: Universidad de Murcia
Stephen J. Mondo: Lawrence Berkeley National Laboratory
José F. Martínez: Universidad de Murcia
Anna Muszewska: Polish Academy of Sciences
Leo A. Baumgart: Lawrence Berkeley National Laboratory
José A. Pérez-Ruiz: Universidad de Murcia
Pablo Carrillo-Marín: Universidad de Murcia
Kurt LaButti: Lawrence Berkeley National Laboratory
Anna Lipzen: Lawrence Berkeley National Laboratory
Yu Zhang: Lawrence Berkeley National Laboratory
Jie Guo: Lawrence Berkeley National Laboratory
Vivian Ng: Lawrence Berkeley National Laboratory
Eusebio Navarro: Universidad de Murcia
Teresa E. Pawlowska: Cornell University
Igor V. Grigoriev: Lawrence Berkeley National Laboratory
Francisco E. Nicolás: Universidad de Murcia
Victoriano Garre: Universidad de Murcia

Nature Communications, 2025, vol. 16, issue 1, 1-21

Abstract: Abstract The discovery of N6-methyladenine (6mA) in eukaryotic genomes, typically found in prokaryotic DNA, has revolutionized epigenetics. Here, we show that symmetric 6mA is essential in the early diverging fungus Rhizopus microsporus, as the absence of the MT-A70 complex (MTA1c) responsible for this modification results in a lethal phenotype. 6mA is present in 70% of the genes, correlating with the presence of H3K4me3 and H2A.Z in open euchromatic regions. This modification is found predominantly in nucleosome linker regions, influencing the nucleosome positioning around the transcription start sites of highly expressed genes. Controlled downregulation of MTA1c reduces symmetric 6mA sites affecting nucleosome positioning and histone modifications, leading to altered gene expression, which is likely the cause of the severe phenotypic changes observed. Our study highlights the indispensable role of the DNA 6mA in a multicellular organism and delineates the mechanisms through which this epigenetic mark regulates gene expression in a eukaryotic genome.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-59170-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59170-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-59170-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59170-x