Photonic axion insulator with non-coplanar chiral hinge transport
Hua-Shan Lai,
Yan-Chen Zhou,
Ze-Qun Sun,
Cheng He () and
Yan-Feng Chen ()
Additional contact information
Hua-Shan Lai: Nanjing University
Yan-Chen Zhou: Nanjing University
Ze-Qun Sun: Nanjing University
Cheng He: Nanjing University
Yan-Feng Chen: Nanjing University
Nature Communications, 2025, vol. 16, issue 1, 1-8
Abstract:
Abstract Axion insulators represent a unique class of magnetic topological phases, linking the two-dimensional quantum anomalous Hall effect to the magnetic higher-order phase of three-dimensional topological insulators. Within axion insulators, axion electrodynamics exhibits novel topological magneto-electric phenomena such as quantized Faraday and Kerr rotation and half-integer surface Hall response. However, among them, the chiral hinge state with non-reciprocal hinge transport as their essential hallmark has yet to be experimentally observed since it was predicted theoretically. Here we report the first photonic axion insulator based on a three-dimensional antiferromagnetic-like structure in microwave bands. Such an artificial magnetic lattice consists of bilayer square-lattice arrays of ferrites imposed with equal but opposite embedded magnets, simultaneously with inversion-symmetric interlayer couplings. By probing all twelve hinges and detecting all eight vertices of the photonic axion insulator, we directly map out the non-coplanar chiral hinge states and observe the non-reciprocal robust hinge transport. The different performances between odd- and even-layer axion insulators are also investigated. These results enrich the family of topological photonics and the controllable dimension of electromagnetic waves, opening up a photonic way to study rich magnetic topological phases that have already been proposed but are challenging to implement in solid-state materials.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-59214-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59214-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-59214-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().