Bilayer orthogonal ferromagnetism in CrTe2-based van der Waals system
Chiara Bigi (),
Cyriack Jego,
Vincent Polewczyk,
Alessandro Vita,
Thomas Jaouen,
Hulerich C. Tchouekem,
François Bertran,
Patrick Le Fèvre,
Pascal Turban,
Jean-François Jacquot,
Jill A. Miwa,
Oliver J. Clark,
Anupam Jana,
Sandeep Kumar Chaluvadi,
Pasquale Orgiani,
Mario Cuoco,
Mats Leandersson,
Thiagarajan Balasubramanian,
Thomas Olsen (),
Younghun Hwang (),
Matthieu Jamet () and
Federico Mazzola ()
Additional contact information
Chiara Bigi: Synchrotron SOLEIL
Cyriack Jego: IRIG-SPINTEC
Vincent Polewczyk: IRIG-SPINTEC
Alessandro Vita: Fritz Haber Institut der Max Planck Gesellshaft
Thomas Jaouen: IPR Institut de Physique de Rennes
Hulerich C. Tchouekem: IPR Institut de Physique de Rennes
François Bertran: Synchrotron SOLEIL
Patrick Le Fèvre: IPR Institut de Physique de Rennes
Pascal Turban: IPR Institut de Physique de Rennes
Jean-François Jacquot: IRIG-SYMMES
Jill A. Miwa: Aarhus University
Oliver J. Clark: Monash University
Anupam Jana: CNR-IOM Istituto Officina dei Materiali
Sandeep Kumar Chaluvadi: CNR-IOM Istituto Officina dei Materiali
Pasquale Orgiani: CNR-IOM Istituto Officina dei Materiali
Mario Cuoco: c/o Universitá di Salerno
Mats Leandersson: Lund University
Thiagarajan Balasubramanian: Lund University
Thomas Olsen: Technical University of Denmark
Younghun Hwang: Ulsan College
Matthieu Jamet: IRIG-SPINTEC
Federico Mazzola: Ca Foscari University of Venice
Nature Communications, 2025, vol. 16, issue 1, 1-8
Abstract:
Abstract Systems with pronounced spin anisotropy are pivotal in advancing magnetization switching and spin-wave generation mechanisms that are fundamental to spintronic technologies. Quasi-van der Waals ferromagnets like Cr1+δTe2 represent seminal materials in this field, renowned for their delicate balance between frustrated layered geometries and magnetism. Despite extensive investigation, the nature of their magnetic ground state and the mechanism of spin reorientation under external fields and varying temperatures remain contested. Here, we exploit complementary techniques to reveal a previously overlooked magnetic phase in Cr1+δTe2 (δ = 0.25 − 0.50), which we term orthogonal-ferromagnetism. This phase consists of atomically sharp single layers of in-plane and out-of-plane maximally canted ferromagnetic blocks, which differs from the stacking of multiple heterostructural elements required for crossed magnetism. Contrary to earlier reports of gradual spin reorientation in CrTe2-based systems, we present evidence for abrupt spin-flop-like transitions. This discovery further highlights Cr1+δTe2 compounds as promising candidates for spintronic and orbitronic applications, opening new pathways for device engineering.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-59266-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59266-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-59266-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().