Hydrogen can both move or pin dislocations in body-centered cubic metals
Kyung-Shik Kim,
Qing-Jie Li,
Ju Li and
Cemal Cem Tasan ()
Additional contact information
Kyung-Shik Kim: MIT
Qing-Jie Li: MIT
Ju Li: MIT
Cemal Cem Tasan: MIT
Nature Communications, 2025, vol. 16, issue 1, 1-9
Abstract:
Abstract Transition to a hydrogen-based economy requires a thorough understanding of hydrogen interaction with dislocations in metals, especially in body-centered cubic (BCC) steels. Past experimental and computational investigations regarding these interactions often demonstrate two opposing results: hydrogen-induced mobility or hydrogen-induced pinning of dislocations. Through in-situ scanning electron microscopy experiments enabled by a custom-built setup, we address here this discrepancy. Our experiments reveal hydrogen-induced dislocation motion in a BCC metal at room temperature. Interestingly, however, we also observe that the same dislocations are later pinned as well, again induced by the steady hydrogen flux. Molecular dynamics simulations of the phenomena confirm the attraction of the dislocations towards the hydrogen flux, and the pinning that follows after, upon increased hydrogen trapping at the dislocation core. Future experimental or computational studies of hydrogen thus should take into account these different regimes in order to present a full picture of hydrogen defect interactions.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-59314-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59314-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-59314-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().