DiffInvex identifies evolutionary shifts in driver gene repertoires during tumorigenesis and chemotherapy
Ahmed Khalil and
Fran Supek ()
Additional contact information
Ahmed Khalil: Institute for Research in Biomedicine (IRB Barcelona)
Fran Supek: Institute for Research in Biomedicine (IRB Barcelona)
Nature Communications, 2025, vol. 16, issue 1, 1-20
Abstract:
Abstract Somatic cells can transform into tumors due to mutations, and the tumors further evolve towards increased aggressiveness and therapy resistance. We develop DiffInvex, a framework for identifying changes in selection acting on individual genes in somatic genomes, drawing on an empirical mutation rate baseline derived from non-coding DNA that accounts for shifts in neutral mutagenesis during cancer evolution. We apply DiffInvex to >11,000 somatic whole-genome sequences from ~30 cancer types or healthy tissues, identifying genes where point mutations are under conditional positive or negative selection during exposure to specific chemotherapeutics, suggesting drug resistance mechanisms occurring via point mutation. DiffInvex identifies 11 genes exhibiting treatment-associated selection for different classes of chemotherapies, linking selected mutations in PIK3CA, APC, MAP2K4, SMAD4, STK11 and MAP3K1 with drug exposure. Various gene-chemotherapy associations are further supported by differential functional impact of mutations pre- versus post-therapy, and are also replicated in independent studies. In addition to nominating drug resistance genes, we contrast the genomes of healthy versus cancerous cells of matched human tissues. We identify noncancerous expansion-specific drivers, including NOTCH1 and ARID1A. DiffInvex can also be applied to diverse analyses in cancer evolution to identify changes in driver gene repertoires across time or space.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-59397-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59397-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-59397-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().