EconPapers    
Economics at your fingertips  
 

Redox-active electrolyte-based printed ionologic devices

Hanfeng Zhou, Przemyslaw Galek (), Tianle Zheng, Panlong Li, Xiongjun Zhou, Congcong Liu, Jonas Kunigkeit, Katherina Haase, Yuxi Li, Jiang Qu, Ahmed Bahrawy, Peixun Xiong, Julia Grothe, Daria Mikhailova, Stefan C. B. Mannsfeld, Eike Brunner and Stefan Kaskel ()
Additional contact information
Hanfeng Zhou: Technische Universität Dresden
Przemyslaw Galek: Technische Universität Dresden
Tianle Zheng: Shanghai University
Panlong Li: Technische Universität Dresden
Xiongjun Zhou: Kunming University of Science and Technology
Congcong Liu: Leibniz Institute for Solid State and Materials Research
Jonas Kunigkeit: Technische Universität Dresden
Katherina Haase: Technische Universität Dresden
Yuxi Li: Technische Universität Dresden
Jiang Qu: Leibniz Institute for Solid State and Materials Research
Ahmed Bahrawy: Technische Universität Dresden
Peixun Xiong: Technische Universität Dresden
Julia Grothe: Technische Universität Dresden
Daria Mikhailova: Leibniz Institute for Solid State and Materials Research
Stefan C. B. Mannsfeld: Technische Universität Dresden
Eike Brunner: Technische Universität Dresden
Stefan Kaskel: Technische Universität Dresden

Nature Communications, 2025, vol. 16, issue 1, 1-10

Abstract: Abstract Ionic devices, such as electrochemical capacitor diodes (CAPodes) and gate-controlled CAPodes with transistor-like gating characteristics (G-CAPodes), offer a novel approach to energy-efficient and nature-inspired logic computing. Their miniaturization and integration render them ideal for ion-transistor circuits, enabling the regulation and signaling of ions and biomolecules. Here, we report an asymmetric system to achieve a potential-driven ion pump for CAPode based on a redox-active Keggin-type electrolyte. This unidirectional capacity is achieved through asymmetric polarization between a plane metal and a porous carbon electrode, enabling selective redox reactions on the metal surface. The nanoporous carbon effectively balances the charge on the redox electrode, while redox couples control the working voltage range. Printed ionologic devices are demonstrated for logic gates, and an integrated NAND (NOT-AND) circuit was constructed using two CAPodes and one G-CAPode. This work proposes a concept for switchable iontronic devices, providing a deeper understanding and applicability of these devices.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-59746-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59746-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-59746-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-23
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59746-7