Enantioselective electroreductive alkyne-aldehyde coupling
Xiyang Cao,
Yuyang Fu,
Yongsheng Tao and
Qingquan Lu ()
Additional contact information
Xiyang Cao: Wuhan University
Yuyang Fu: Wuhan University
Yongsheng Tao: Wuhan University
Qingquan Lu: Wuhan University
Nature Communications, 2025, vol. 16, issue 1, 1-8
Abstract:
Abstract Electrocatalytic methods that facilitate the asymmetric reductive coupling of two π-components with complete control over regio-, stereo-, and enantioselectivity remain underexplored. Herein, we report a highly regio- and enantioselective cobaltaelectro-catalyzed alkyne-aldehyde coupling reaction, in which protons and electrons serve as the hydrogen source and reductant, respectively. Earth-abundant cobalt and air-stable (S,S)−2,3-bis(tert-butylmethylphosphino)quinoxaline (QuinoxP*) are used as the catalyst and ligand, respectively. A series of enantioenriched allylic alcohols can be constructed with excellent regio- (>19:1), stereo- (>19:1 E:Z), and enantioselectivity (up to 98% ee).
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-60230-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60230-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-60230-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().