New proton emitter 188At implies an interaction unprecedented in heavy nuclei
Henna Kokkonen (),
Kalle Auranen (),
Pooja Siwach,
Paramasivan Arumugam,
Andrew D. Briscoe,
Sarah Eeckhaudt,
Lidia S. Ferreira,
Tuomas Grahn,
Paul T. Greenlees,
Pete Jones,
Rauno Julin,
Sakari Juutinen,
Matti Leino,
Ari-Pekka Leppänen,
Enrico Maglione,
Markus Nyman,
Robert D. Page,
Janne Pakarinen,
Panu Rahkila,
Jan Sarén,
Catherine Scholey,
Juha Sorri,
Juha Uusitalo and
Martin Venhart
Additional contact information
Henna Kokkonen: University of Jyväskylä
Kalle Auranen: University of Jyväskylä
Pooja Siwach: Lawrence Livermore National Laboratory
Paramasivan Arumugam: Indian Institute of Technology Roorkee
Andrew D. Briscoe: University of Liverpool
Sarah Eeckhaudt: University of Jyväskylä
Lidia S. Ferreira: Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais
Tuomas Grahn: University of Jyväskylä
Paul T. Greenlees: University of Jyväskylä
Pete Jones: University of Jyväskylä
Rauno Julin: University of Jyväskylä
Sakari Juutinen: University of Jyväskylä
Matti Leino: University of Jyväskylä
Ari-Pekka Leppänen: University of Jyväskylä
Enrico Maglione: Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais
Markus Nyman: University of Jyväskylä
Robert D. Page: University of Liverpool
Janne Pakarinen: University of Jyväskylä
Panu Rahkila: University of Jyväskylä
Jan Sarén: University of Jyväskylä
Catherine Scholey: University of Jyväskylä
Juha Sorri: University of Jyväskylä
Juha Uusitalo: University of Jyväskylä
Martin Venhart: University of Jyväskylä
Nature Communications, 2025, vol. 16, issue 1, 1-6
Abstract:
Abstract We report the discovery of a new atomic nucleus 188At, which is the heaviest proton-emitting isotope known to date. The new activity was observed through the 107Ag(84Sr, 3n)188At fusion-evaporation reaction using the focal-plane spectrometer of the gas-filled recoil separator in the Accelerator Laboratory of the University of Jyväskylä, Finland. To fully interpret the experimental data, we have expanded the non-adiabatic quasiparticle model to treat nuclei in the beyond-lead region. The description reproduced the measured decay rate and pointed towards emission from an extremely prolate-deformed state with a dominant s1/2 proton component in the wave function. The Thomas-Ehrman shift can be enhanced in low angular momentum states, but such effects have not been observed in heavy nuclei. The single-proton separation energy of 188At deviates from that extrapolated from the systematics, which can be interpreted as the first evidence of this effect in heavy nuclei.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-60259-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60259-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-60259-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().