Mechanism of ATP hydrolysis in the Hsp70 BiP nucleotide-binding domain
Guillaume Mas and
Sebastian Hiller ()
Additional contact information
Guillaume Mas: University of Basel
Sebastian Hiller: University of Basel
Nature Communications, 2025, vol. 16, issue 1, 1-15
Abstract:
Abstract The 70 kDa heat shock protein (Hsp70) family of molecular chaperones ensures protein biogenesis and homeostasis, driven by ATP hydrolysis. Here, we introduce in-cyclo NMR, an experimental setup that combines high-resolution NMR spectroscopy with an ATP recovery and a phosphate removal system. In-cyclo NMR simultaneously resolves kinetic rates and structural information along functional cycles of ATP-driven molecular machines. We benchmark the method on the nucleotide binding domain (NBD) of the human Hsp70 chaperone BiP. The protein cycles through ATP binding, hydrolysis, and two parallel pathways of product release. We determine the kinetic rates of all eleven underlying elementary reactions and show these to match independent measurements. The two product release pathways regulate the cycle duration dependent on the products concentration. Under physiological conditions, they are both used. The in-cyclo NMR method will serve as a platform for studies of ATP-driven functional cycles at a remarkable level of detail.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-60343-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60343-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-60343-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().