The feedback driven atomic scale Josephson microscope
Samuel D. Escribano (),
Víctor Barrena,
David Perconte,
Jose Antonio Moreno,
Marta Fernández Lomana,
Miguel Águeda,
Edwin Herrera,
Beilun Wu,
Jose Gabriel Rodrigo,
Elsa Prada,
Isabel Guillamón,
Alfredo Levy Yeyati and
Hermann Suderow ()
Additional contact information
Samuel D. Escribano: Universidad Autónoma de Madrid
Víctor Barrena: Universidad Autónoma de Madrid
David Perconte: Universidad Autónoma de Madrid
Jose Antonio Moreno: Universidad Autónoma de Madrid
Marta Fernández Lomana: Universidad Autónoma de Madrid
Miguel Águeda: Universidad Autónoma de Madrid
Edwin Herrera: Universidad Autónoma de Madrid
Beilun Wu: Universidad Autónoma de Madrid
Jose Gabriel Rodrigo: Universidad Autónoma de Madrid
Elsa Prada: Consejo Superior de Investigaciones Científicas (CSIC)
Isabel Guillamón: Universidad Autónoma de Madrid
Alfredo Levy Yeyati: Universidad Autónoma de Madrid
Hermann Suderow: Universidad Autónoma de Madrid
Nature Communications, 2025, vol. 16, issue 1, 1-10
Abstract:
Abstract The ultimate spatial limit to establish a Josephson coupling between two superconducting electrodes is an atomic-scale junction. The Josephson effect in such ultrasmall junctions has been used to unveil new switching dynamics, study coupling close to superconducting bound states or reveal non-reciprocal effects. However, the Josephson coupling is weak and the sensitivity to temperature reduces the Cooper pair current magnitude. Here we show that a feedback element induces a time-dependent bistable regime which consists of spontaneous periodic oscillations between two different Cooper pair tunneling states (corresponding to the DC and AC Josephson regimes respectively). The amplitude of the time-averaged current within the bistable regime is almost independent of temperature. By tracing the periodic oscillations in the new bistable regime as a function of the position in a Scanning Tunneling Microscope, we obtain atomic scale maps of the critical current in 2H-NbSe2 and find spatial modulations due to a pair density wave. Our results fundamentally improve our understanding of atomic size Josephson junctions including a feedback element in the circuit and provide a promising new route to study superconducting materials through atomic scale maps of the Josephson coupling.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-60569-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60569-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-60569-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().