EconPapers    
Economics at your fingertips  
 

Chiral substrate-induced chiral covalent organic framework membranes for enantioselective separation of macromolecular drug

Xiaoyue Gao and Teng Ben ()
Additional contact information
Xiaoyue Gao: Jilin University
Teng Ben: Jilin University

Nature Communications, 2025, vol. 16, issue 1, 1-12

Abstract: Abstract Chiral drugs are essential in modern medicine, but separating their enantiomers is challenging due to their similar physicochemical properties. However, traditional methods are often costly and inefficient. Here we show that chiral covalent organic framework (CCOF-300) membranes, induced by chiral dopants (L-( + )-/D-(–)-tartaric acid), can achieve high enantioselectivity in separating chiral drugs. Specifically, CCOF-300 membrane achieved 100% enantiomeric excess in separating racemic N-Fmoc-N’-[1-(4,4-Dimethyl–2,6-dioxocyclohexylidene)ethyl]-lysine (Fmoc-Lys(Dde)-OH). We found that size matching and differences in diffusion rates between enantiomers are key factors in chiral separation. Additionally, there were no significant differences in the binding energy between ibuprofen (IBU), Fmoc-Lys(Dde)-OH, and CCOF-300, indicating that binding energy is not the dominant factor in chiral separation. This study proposes a cost-effective and scalable method for chiral drug separation, highlighting the potential of chiral induction strategy in improving chiral separation technology in the pharmaceutical industry.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-60572-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60572-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-60572-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-06-06
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60572-0