EconPapers    
Economics at your fingertips  
 

Efficient cavity-mediated energy transfer between photosynthetic light harvesting complexes from strong to weak coupling regime

Fan Wu, Tu C. Nguyen- Phan, Richard Cogdell and Tönu Pullerits ()
Additional contact information
Fan Wu: Lund University
Tu C. Nguyen- Phan: University of Glasgow
Richard Cogdell: University of Glasgow
Tönu Pullerits: Lund University

Nature Communications, 2025, vol. 16, issue 1, 1-9

Abstract: Abstract Excitation energy transfer between photosynthetic light-harvesting complexes is vital for highly efficient primary photosynthesis. Controlling this process is the key for advancing the emerging artificial photosynthetic systems. Here, we experimentally demonstrate the enhanced excitation energy transfer between photosynthetic light-harvesting 2 complexes (LH2) mediated through the Fabry-Pérot optical microcavity. Using intensity-dependent pump-probe spectroscopy, we analyse the exciton-exciton annihilation (EEA) due to inter-LH2 energy transfer. Comparing EEA in LH2 within cavity samples and the bare LH2 films, we observe enhanced EEA in cavities indicating improved excitation energy transfer via coupling to a common cavity mode. Surprisingly, the effect remains even in the weak coupling regime. The enhancement is attributed to the additional connectivity between LH2s introduced by the resonant optical microcavity. Our results suggest that optical microcavities can be a strategic tool for modifying excitation energy transfer between molecular complexes, offering a promising approach towards efficient artificial light harvesting.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-60616-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60616-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-60616-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-06-21
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60616-5