Growth arrest is a DNA damage protection strategy in Arabidopsis
Antonio Serrano-Mislata (),
Jorge Hernández-García,
Carlos Ollas,
Noel Blanco-Touriñán,
Silvia Jurado-García,
Cristina Úrbez,
Aurelio Gómez-Cadenas,
Robert Sablowski,
David Alabadí and
Miguel A. Blázquez ()
Additional contact information
Antonio Serrano-Mislata: Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València
Jorge Hernández-García: Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València
Carlos Ollas: Universitat Jaume I
Noel Blanco-Touriñán: Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València
Silvia Jurado-García: Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València
Cristina Úrbez: Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València
Aurelio Gómez-Cadenas: Universitat Jaume I
Robert Sablowski: John Innes Centre
David Alabadí: Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València
Miguel A. Blázquez: Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València
Nature Communications, 2025, vol. 16, issue 1, 1-12
Abstract:
Abstract When exposed to stress, plants reduce growth while activating defense mechanisms—a behaviour proposed to help reallocate resources and meet the energy demands required for survival. Here, we have challenged this view by mutating the cyclin-dependent kinase inhibitor SMR1 to reverse the growth arrest imposed by high DELLA levels. These plants continue growing under limited water availability but maintain the same oxidative stress tolerance and survival rates as the parental line that halted growth. However, shoot and root meristematic cells that keep dividing under drought or genotoxic stress accumulate DNA damage, frequently leading to cell death. Since the DNA lesions are observed in the apical stem cells that give rise to all plant organs, including flowers, we propose that systemic growth arrest acts as a defense strategy that plants employ not only to maximize individual fitness, but also to ensure the accurate transmission of genetic information to their progeny.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-60733-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60733-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-60733-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().