EconPapers    
Economics at your fingertips  
 

Sulfur isotopes from the lunar farside reveal global volatile loss following the giant impact

Yiheng Li, Zaicong Wang (), Wen Zhang, Keqing Zong, Zhenbing She, Qi He, Jiaqi Zheng, Tianyang Li, Fabin Pan, Xu Chen, Kosta Crnobrnja, Long Xiao, Zhaochu Hu, Xiang Wu, Yongsheng Liu, Julien Siebert and Frédéric Moynier
Additional contact information
Yiheng Li: China University of Geosciences
Zaicong Wang: China University of Geosciences
Wen Zhang: China University of Geosciences
Keqing Zong: China University of Geosciences
Zhenbing She: China University of Geosciences
Qi He: China University of Geosciences
Jiaqi Zheng: China University of Geosciences
Tianyang Li: China University of Geosciences
Fabin Pan: China University of Geosciences
Xu Chen: China University of Geosciences
Kosta Crnobrnja: China University of Geosciences
Long Xiao: China University of Geosciences
Zhaochu Hu: China University of Geosciences
Xiang Wu: China University of Geosciences
Yongsheng Liu: China University of Geosciences
Julien Siebert: Universite de Paris Cité, Institut de Physique du Globe de Paris, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7154
Frédéric Moynier: Universite de Paris Cité, Institut de Physique du Globe de Paris, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7154

Nature Communications, 2025, vol. 16, issue 1, 1-10

Abstract: Abstract The Moon is strongly depleted in volatile elements and exhibits heavier isotopic signatures (e.g., K, Zn) than the Earth. However, the pronounced nearside–farside dichotomy and uneven distribution of volatiles across lunar interior raise the question of whether such heavier isotopic signatures resulted from a global giant impact or local magmatic processes. Here we report high sulfur contents (1800 ± 400 µg/g) and δ34S values (0.83 ± 0.16‰, 2SE, n = 17) in Chang’e-6 basalt from lunar farside, with similar δ34S values in two nonmare crustal clasts. These values fall within the range reported for nearside mare basalts and basaltic meteorites of different ages and mantle sources, indicating a broadly homogeneous δ34S composition across lunar interior that is ~2‰ heavier than the Earth’s mantle. This isotopic signature cannot be explained by core formation or late accretion and is best attributed to global volatile loss during the Moon-forming impact. Subsequent magma ocean evolution and mantle overturn drove heterogeneous volatile budget in lunar mantle.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-60743-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60743-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-60743-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-03
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60743-z