EconPapers    
Economics at your fingertips  
 

Collapse of the standard ferromagnetic domain structure in hybrid Co/Molecule bilayers

Mattia Benini (), Andrei Shumilin (), Viktor Kabanov, Rajib Kumar Rakshit, Antarjami Sahoo, Anita Halder, Andrea Droghetti, Francesco Cugini, Massimo Solzi, Diego Bisero, Patrizio Graziosi, Alberto Riminucci, Ilaria Bergenti, Manju Singh, Luca Gnoli, Samuele Sanna, Mirko Cinchetti, Tomaz Mertelj, Stefano Sanvito () and Valentin Alek Dediu ()
Additional contact information
Mattia Benini: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)
Andrei Shumilin: Jozef Stefan Institute
Viktor Kabanov: Jozef Stefan Institute
Rajib Kumar Rakshit: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)
Antarjami Sahoo: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)
Anita Halder: Trinity College
Andrea Droghetti: Trinity College
Francesco Cugini: Parco Area delle Scienze 7/A
Massimo Solzi: Parco Area delle Scienze 7/A
Diego Bisero: Via Saragat 1
Patrizio Graziosi: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)
Alberto Riminucci: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)
Ilaria Bergenti: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)
Manju Singh: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)
Luca Gnoli: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)
Samuele Sanna: via Berti-Pichat 6/2
Mirko Cinchetti: TU Dortmund University
Tomaz Mertelj: Jozef Stefan Institute
Stefano Sanvito: Trinity College
Valentin Alek Dediu: Istituto per lo Studio dei Materiali Nanostrutturati - CNR (ISMN-CNR)

Nature Communications, 2025, vol. 16, issue 1, 1-11

Abstract: Abstract The interplay between Hund’s coupling, exchange interaction and magnetic anisotropy is responsible for a multitude of magnetic phases, ranging from conventional ferromagnetism to exotic spin textures. Yet, engineering and fine-tuning a magnetic state remains a major challenge in modern magnetism. We show that the chemisorption of organic molecules over Co thin films offers a tool to transform the films from ferromagnetic to a glassy-type state. This emerges when the correlation length of the random anisotropy field, induced by the π-d molecule/metal hybridization, is comparable to the characteristic exchange length. Such a state is characterized by the collapse of the standard domain structure and the emergence of blurred pseudo-domains intertwined by diffuse and irregular domain walls. The magnetization reversal then involves topological vortex-like structures, which are here predicted and successfully measured by magnetic-force microscopy. At the macroscopic level this new glassy-type state is defined by a giant magnetic hardening and the violation of the magnetization-reversal Rayleigh law. Our work thus shows that the electronic interaction of a standard thin-film magnet with readily available molecules can generate structures with remarkable new magnetic properties, and thus opens a new avenue for the design of tailored-on-demand magnetic composites.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-61068-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61068-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-61068-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-03
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61068-7